US009342712B2

a2z United States Patent (10) Patent No.: US 9,342,712 B2
Zhuang 45) Date of Patent: May 17, 2016
(54) METHOD AND SYSTEM FOR (56) References Cited
ACCELERATING CRYPTOGRAPHIC
PROCESSING U.S. PATENT DOCUMENTS
(71) Applicant: Advanced Micro Devices, Inc., 5,613,005 A ¥ 3/1997 Murakami HO;‘ 5?0/92/411%
Sunnyvale, CA (US) 6,272,221 BL* 82001 TSUROO ...coooocvrcrrrrrirns 380/28
6,658,569 B1* 12/2003 Patarincccc..... GOGF 7/723
(72) Inventor: Gongyuan Zhuang, Austin, TX (US) 713/155
6,889,320 B1* 5/2005 Davisetal.ccccoc... 712/233
(73) Assignee: ADVANCED MICRO DEVICES, 6,973,187 B2* 122005 Gligor oo HO4L 9/0637
INC., S le, CA (US 380128
» Sunnyvale, CA (US) 7,600,122 B2* 10/2009 Tardo etal. ... 713/171
7,991,162 B2* 8/2011 GOGF 7/725
(*) Notice: Subject to any disclaimer, the term of this 380/280
patent is extended or adjusted under 35 8,036,377 B1* 10/2011 Pooetal. 380/28
2001/0021253 Al* 9/2001 Furuya HO4L 9/0625
U.S.C. 154(b) by 92 days.
380/259
2002/0131592 Al* 9/2002 Hi | ST HO4L 9/0662
(21) Appl. No.: 13/910,476 S o
(22) Filed: Jun.5,2013 (Continued)
OTHER PUBLICATIONS
(65) Prior Publication Data
3k
US 2013/0332744 A1 Dec. 12, 2013 (ACM Snapshot) .
(Continued)
Related U.S. Application Data Primary Examiner — Michael Pyzocha
(60) Provisional application No. 61/657,400, filed on Jun. (74) Attorney, Agent, or Firm — Volpe and Koenig, P.C.
8,2012. (57) ABSTRACT
(51) Int.Cl A method, an apparatus, and a non-transitory computer read-
able medium for accelerating cryptographic processing are
GO6F 21/72 (2013.01) ble medium f lerati hi i
presented. A cryptographic algorithm is parallelized, which
G09C 1/00 (2006.01)
HO4L 9/06 (2006.01) includes breaking the cryptographic algorithm into compo-
HO4L 9/30 (2006.01) nents, parallelizing an entire component if the component is
(52) US.Cl ’ fully parallelizable, parallelizing part of a component if the
MR)) component is partially parallelizable, and sequentially
CPC GO6F 21/72 (2013.01); GOIC 1/. 00 (2013.01); executing a component if the component is not parallelizable.
HO4L 9/0631 (2013.01); HO4L 9/0637 Processing of the parallelizable component or the partiall
2 p p p y
(2013.01); HO4L 9/0643 (2013.01); HO4L parallelizable component is distributed to one or more paral-
Y3066 (2013.01); HO4L 2209/125 (2013.01) lelized devices. The parallelized devices include at least one
(58) Field of Classification Search of: a graphics processing unit or a cryptographic processing

CPC

9/0631; HOAL 9/0643; HO4L 9/3066; GO6F

HO4L 2209/125; HO4L 9/0637; HO4AL

21/72; GO9C 1/00

See application file for complete search history.

Start

Break
cryptographic
algorithm Into

components

Select first
s

302~

300

Leave the
C a
sequential

[~—308

Checked all

Yes

Parallelize the part of the
component that is
parallelizable

320~ End

310

device, which may include an integrated cryptographic pro-
cessor or a cryptographic co-processor.

22 Claims, 3 Drawing Sheets

312

No

Select next
component

314

US 9,342,712 B2

Page 2
(56) References Cited 2012/0159194 Al1* 6/2012 Anderson ... HO4L 9/002
713/190
U.S. PATENT DOCUMENTS 2012/0167097 Al* 6/2012 Condorelli GO6F 9/46
718/101
2002/0178207 AL* 11/2002 McNeil oo, 709/102 2012/0180030 Al* 7/2012 Crutchfield etal. 717/149
2003/0142818 Al* 7/2003 Raghunathan GO6F 21/72 2012/0254888 Al* 10/2012 Kalogeropulos GO6F 8/452
380/1 718/107
2007/0055875 Al* 3/2007 Tardoetal. 713/169 2013/0151787 Al* 6/2013 Rigueretal. 711/137
2007/0083574 Al* 4/2007 Garinetal. 707/204
2008/0046756 Al* 2/2008 Dempski et al. ... 713/187
2008/0147945 AL* 6/2008 Zimmer ... GOGF 9/4812 OTHER PUBLICATIONS
710/260
2008/0195847 AL* §/2008 Wuetal .o 712/216 (IEEE Snapshot).*
2008/0292101 AL* 11/2008 Macchi wovrvvvnree. HO4L 63/0428 Bielecki, W Wlodzimierz odzimierz et al., “Parallelization Method
380/270 . . N . . .
2009/0327818 AL* 12/2009 Kogelnik 714749 of Encryption Algorithms”, Advances in Information Processing and
2010/0306553 Al* 12/2010 Poletti, III 713/189 ~ Protection, (c) 2007, pp. 191-204.
2011/0067014 Al* 3/2011 Songccccceeveeenenn GO6F 8/456

717/149

* cited by examiner

US 9,342,712 B2

Sheet 1 of 3

May 17, 2016

U.S. Patent

O:I\J

sa01Aap Indino

1l g

_
JaAup Inding " sao1Aep Indut
_

l "Old

Aows|y

I
(V 10SS220.d (V_ JaAup ndug
I

01

abelols 00T

US 9,342,712 B2

Sheet 2 of 3

May 17, 2016

U.S. Patent

80¢

dJD/VWI

90¢

¢

¥0¢

¢

NdS

Ndd

00

¢ Old

.

21emos
oiydesboydAd

//SN

US 9,342,712 B2

Sheet 3 of 3

May 17, 2016

U.S. Patent

jJuauodwod
XBU 19|9S

1

(423

9|gezi9||eed

1433

¢Swuauodwod
[1e P23y

|enuanbas
80€ —~—4 Se jusuodwod [

si Jey3 Juauodwod
3} Jo Hed ay) azifo||eled

Juauodwod aiRua |
9y} azl|9|jeted

¢o|qezie|jeled
Ainy Jusuodwod
oY1 5]

91¢

¢

81¢

¢o|qezayeed

9} aAeaT

uauodwod
9y} 5[

ON
90¢

00€

€ Ol

[
»

Juauodwod
3544 PORS
)

sjuauodwod

ojul wylobje

Jydesboydhn [~ ¢0€
Jealg

~——~$0E

~"0¢€

US 9,342,712 B2

1
METHOD AND SYSTEM FOR
ACCELERATING CRYPTOGRAPHIC
PROCESSING

CROSS REFERENCE TO RELATED
APPLICATIONS

This application claims the benefit of U.S. Provisional
Application No. 61/657,400, filed on Jun. 8, 2012, which is
incorporated by reference as if fully set forth herein.

TECHNICAL FIELD

The disclosed embodiments are generally directed to cryp-
tography, and in particular, to methods and systems for accel-
erating cryptographic processing.

BACKGROUND

Cryptographic algorithms are computationally intensive
and are typically implemented in software running on a cen-
tral processing unit (CPU) core. This computational intensity
has the potential to impact overall system performance, bat-
tery life, and end-user experience on modern platforms. It is
desirable to address these issues, while maintaining an end
goal of information security.

SUMMARY OF EMBODIMENTS

Some embodiments provide a method for accelerating
cryptographic processing. A cryptographic algorithm is par-
allelized, which includes breaking the cryptographic algo-
rithm into components, parallelizing an entire component if
the component is fully parallelizable, parallelizing part of a
component if the component is partially parallelizable, and
sequentially executing a component if the component is not
parallelizable. Processing of the parallelizable component or
the partially parallelizable component is distributed to one or
more parallelized devices.

Some embodiments provide a system for accelerating
cryptographic processing. The system includes one or more
parallelized devices and a central processing unit core. The
central processing unit core is configured to parallelize a
cryptographic algorithm, including break the cryptographic
algorithm into components, parallelize an entire component
if the component is fully parallelizable, parallelize part of a
component if the component is partially parallelizable, and
sequentially execute a component if the component is not
parallelizable. The central processing unit core is further con-
figured to distribute processing of the parallelizable compo-
nent or the partially parallelizable component to the one or
more parallelized devices.

Some embodiments provide a non-transitory computer-
readable storage medium storing a set of instructions for
execution by a general purpose computer to accelerate cryp-
tographic processing. The set of instructions includes a first
parallelizing code segment for parallelizing a cryptographic
algorithm. The first parallelizing code segment includes a
breaking code segment for breaking the cryptographic algo-
rithm into components, a second parallelizing code segment
for parallelizing an entire component if the component is
fully parallelizable, a third parallelizing code segment for
parallelizing part of acomponent if the component is partially
parallelizable, and a sequentially executing code segment for
sequentially executing a component if the component is not
parallelizable. The set of instructions also includes a distrib-
uting code segment for distributing processing of the paral-

10

15

20

25

30

35

40

45

50

55

60

65

2

lelizable component or the partially parallelizable component
to one or more parallelized devices.

BRIEF DESCRIPTION OF THE DRAWINGS

A more detailed understanding may be had from the fol-
lowing description, given by way of example in conjunction
with the accompanying drawings, wherein:

FIG. 1 is a block diagram of an example device in which
one or more disclosed embodiments may be implemented;

FIG. 2 is a block diagram of a portion of a system in which
one or more disclosed embodiments may be implemented;
and

FIG. 3 is a flowchart of a method for parallelizing a cryp-
tographic algorithm.

DETAILED DESCRIPTION

A method, an apparatus, and a non-transitory computer
readable medium for accelerating cryptographic processing
are presented. A cryptographic algorithm is parallelized,
which includes breaking the cryptographic algorithm into
components, parallelizing an entire component if the compo-
nent is fully parallelizable, parallelizing part of' a component
if the component is partially parallelizable, and sequentially
executing a component if the component is not parallelizable.
Processing of the parallelizable component or the partially
parallelizable component is distributed to one or more paral-
lelized devices. The parallelized devices include at least one
of: a graphics processing unit or a cryptographic processing
device, which may include an integrated cryptographic pro-
cessor or a cryptographic co-processor.

FIG. 1 is a block diagram of an example device 100 in
which one or more disclosed embodiments may be imple-
mented. The device 100 may include, for example, a com-
puter, a gaming device, a handheld device, a set-top box, a
television, a mobile phone, or a tablet computer. The device
100 includes a processor 102, a memory 104, a storage 106,
one or more input devices 108, and one or more output
devices 110. The device 100 may also optionally include an
input driver 112 and an output driver 114. Itis understood that
the device 100 may include additional components not shown
in FIG. 1.

The processor 102 may include a central processing unit
(CPU) core, a graphics processing unit (GPU) core, a CPU
core and a GPU core located on the same die, or one or more
processor cores, wherein each processor core may be a CPU
core or a GPU core. The memory 104 may be located on the
same die as the processor 102, or may be located separately
from the processor 102. The memory 104 may include a
volatile or non-volatile memory, for example, random access
memory (RAM), dynamic RAM, or a cache.

The storage 106 may include a fixed or removable storage,
for example, a hard disk drive, a solid state drive, an optical
disk, or a flash drive. The input devices 108 may include a
keyboard, a keypad, a touch screen, a touch pad, a detector, a
microphone, an accelerometer, a gyroscope, a biometric
scanner, or a network connection (e.g., a wireless local area
network card for transmission and/or reception of wireless
IEEE 802 signals). The output devices 110 may include a
display, a speaker, a printer, a haptic feedback device, one or
more lights, an antenna, or a network connection (e.g., a
wireless local area network card for transmission and/or
reception of wireless IEEE 802 signals).

The input driver 112 communicates with the processor 102
and the input devices 108, and permits the processor 102 to
receive input from the input devices 108. The output driver

US 9,342,712 B2

3

114 communicates with the processor 102 and the output
devices 110, and permits the processor 102 to send output to
the output devices 110. It is noted that the input driver 112 and
the output driver 114 are optional components, and that the
device 100 will operate in the same manner if the input driver
112 and the output driver 114 are not present.

Cryptographic processing performance may be improved
by hardware changes, software changes, or a combination of
both. Hardware changes may include using faster CPUs;
more CPU cores; or a highly parallelized architecture proces-
sor such as a dedicated function module, including, for
example, an integrated cryptographic accelerator (ICA) or a
cryptographic co-processor (CCP). Software changes may
include parallel cryptographic processing or distributing por-
tions of the cryptographic processing workload to parallel-
ized devices (which include a highly parallelized processor
architecture).

By using a dedicated device for cryptographic processing
(either an ICA or a CCP), the processing load may be shifted
off of the CPU and onto the dedicated device. Shifting some
of the processing load off of the CPU results in lower power
consumption by the CPU, makes the CPU available for other
tasks (freeing up resources), and may permit the crypto-
graphic processing to be completed faster.

FIG. 2 is a block diagram of a portion of a system 200 in
which one or more disclosed embodiments may be imple-
mented. The system 200 includes a cryptographic software
component 202, a CPU 204, a GPU 206, and a cryptographic
processing device 208, which may include an ICA or a CCP.
The CPU 204, the GPU 206, and the cryptographic process-
ing device 208 may all be located on the same die, on different
dies, or a combination thereof.

It is noted that the system 200 may be implemented with
either the GPU 206 or the cryptographic processing device
208 or both. The cryptographic processing device 208, while
possibly including some design similarities to the GPU 206,
differs from the GPU 206 in that the cryptographic processing
device 208 includes specific cryptographic-related function-
ality, as described in detail below.

FIG. 3 is a flowchart of a method 300 for parallelizing a
cryptographic algorithm. The method 300 is performed in
connection with a CPU, a GPU, and/or a cryptographic pro-
cessing device (ICA or CCP). A cryptographic algorithm is
broken into separate components (step 302). The components
of'a cryptographic algorithm may include individual modules
or functions that comprise the cryptographic algorithm. A
first component of the cryptographic algorithm is selected
(step 304) and a determination is made whether the selected
component is parallelizable (step 306). If the selected com-
ponent is not parallelizable then the selected component is
left as sequential (step 308). Next a determination is made
whether all of the components of the cryptographic algorithm
have been checked (step 310). If all of the components have
not been checked, then the next component in the crypto-
graphic algorithm is selected (step 312) and the method 300
continues at step 306 as described above. If all of the compo-
nents have been checked (step 310), then the method termi-
nates (step 314).

If'the selected component of the cryptographic algorithm is
parallelizable (step 306), then a determination is made
whether the selected component is fully parallelizable (step
316). If the selected component is fully parallelizable, then
the entire component is parallelized (step 318). Next a deter-
mination is made whether all of the components of the cryp-
tographic algorithm have been checked (step 310). Ifall of the
components have not been checked, then the next component
in the cryptographic algorithm is selected (step 312) and the

40

45

55

4

method 300 continues at step 306 as described above. If all of
the components have been checked (step 310), then the
method terminates (step 314).

If the selected component is not fully parallelizable (step
316), then the part of the selected component that is parallel-
izable is parallelized (step 320). Next a determination is made
whether all of the components of the cryptographic algorithm
have been checked (step 310). If all of the components have
not been checked, then the next component in the crypto-
graphic algorithm is selected (step 312) and the method 300
continues at step 306 as described above. If all of the compo-
nents have been checked (step 310), then the method termi-
nates (step 314).

A programmer may indicate whether a component or a part
of' a component is parallelizable, may indicate a preference
for whether the component or part of the component is par-
allelizable depending on the available hardware, or may leave
the determination to the method 300, which would include
determining the available hardware at runtime. In addition, it
may be possible for the programmer to indicate where (for
example, on the GPU or on the ICA or CCP) to perform the
parallelizable component or parallelizable part of the compo-
nent.

One implementation of the method 300 may be based on
the Advanced Encryption Standard (AES). It is noted that the
description herein of AES is only an example used to further
describe the system 200 and the method 300, and that the
system 200 and the method 300 are applicable to any crypto-
graphic algorithm. Furthermore, it is noted that the crypto-
graphic processing device 208 may include one or more cryp-
tographic engines, with each cryptographic engine being
specific to a particular cryptographic algorithm, such that a
different cryptographic engine (or multiple cryptographic
engines) would be needed in the cryptographic processing
device 208 depending on the cryptographic algorithm(s)
being performed therein. Alternatively, the cryptographic
processing device 208 may include a single cryptographic
engine, such that a different cryptographic processing device
208 would be needed in the system 200 depending on the
cryptographic algorithm being performed therein.

The AES algorithm uses a symmetric key block cipher
algorithm to provide an information service, such as confi-
dentiality or authentication. AES has a fixed block size of 128
bits and a key size of 128, 192, or 256 bits. Some CPUs may
include AES-specific instructions in their instruction sets.
Portions of the AES algorithm that are fully parallelizable
include the electronic codebook(ECB) and counter (CTR)
portions. Portions of the AES algorithm that are partially
parallelizable include cipher-block chaining(CBC) and
cipher feedback (CFB), which may support parallel decryp-
tion, and counter mode with CBC-MAC(CCM) and Galois/
counter (GCM), with the authentication part not being paral-
lelizable. The output feedback (OFB) portion of the AES
algorithm would remain sequential.

In general, cryptographic primitives may be classified into
parallelizable functions, partially parallelizable functions,
and sequential functions. Examples of parallelizable func-
tions include, but are not limited to, symmetric cryptography
with parallelizable modes, parallelizable message authenti-
cation code (PMAC), and a primality test for asymmetric
cryptography. Examples of partially parallelizable functions
include, but are not limited to, symmetric cryptography with
partial parallelizable modes, and special instructions, such as
streaming single instruction, multiple data extensions (SSE)
for hash functions. Examples of sequential functions include,
but are not limited to, most hash functions and asymmetric
cryptography. In regard to the sequential functions, using a

US 9,342,712 B2

5

cryptographic processing device, such as an ICA ora CCP, for
performing these functions may help to reduce the load on the
associated CPU.

Examples of functions that may be performed by the cryp-
tographic processing device include, but are not limited to,
the following. It is noted that a cryptographic processing
device (either an ICA or a CCP) is configured to implement a
single cryptographic algorithm. If multiple cryptographic
algorithms were implemented in a single system, then mul-
tiple cryptographic processing devices would be required.

In an AES engine, the cryptographic processing device
may be configured to include multiple engines and perform
pipeline processing, which in some implementations, may
result in a 8-10x performance improvement.

In a secure hash algorithm (SHA) engine, the crypto-
graphic processing device may be configured to perform
SHA1, SHA-256, HMACSHA1, HMACSHA-256, SHA 384
and 512 (for SHA and hash-based message authentication
code HMAC), and SHA-3.

In a RSA engine, the cryptographic processing device may
be configured to perform up to 4096-bit modular exponentia-
tion, key generation, and primality checking.

In an elliptic curve cryptography (ECC) engine, the cryp-
tographic processing device may be configured to perform an
elliptic curve digital signature algorithm (ECDSA) up to 256-
bit signature generation and verification, elliptic curve Ditfie-
Hellman (ECDH) up to a 256-bit key deployment, key gen-
eration, 384-bit and above support for ECC, and primality
checking.

In connection with key management support, the crypto-
graphic processing device may be configured to provide chip-
unique secret or private keys that are local to the crypto-
graphic processing device, and to provide other generated
secret or private keys.

In connection with side channel attack (SCA) countermea-
sures, the cryptographic processing device may be configured
to perform AES, RSA, and ECC algorithms; generate noise
and random delays; strive for a constant execution time; and
perform data independent execution.

In addition to the preceding, the cryptographic processing
device may also be configured to perform as a hardware
random number generator, to support multiple data streams,
to support early termination of the cryptographic algorithm,
and to access direct memory access (DMA)-based input/
output data with full coherency support.

The cryptographic processing device may be used to pro-
vide a trusted execution environment, a hardware rooted
secure boot, a trusted platform module (TPM), and general
cryptographic acceleration. The cryptographic processing
device may be implemented to enable solutions such as
mobile payment, anti-theft, identity management, data pro-
tection, anti-malware, and content protection.

It should be understood that many variations are possible
based on the disclosure herein. Although features and ele-
ments are described above in particular combinations, each
feature or element may be used alone without the other fea-
tures and elements or in various combinations with or without
other features and elements.

The methods provided may be implemented in a general
purpose computer, a processor, or a processor core. Suitable
processors include, by way of example, a general purpose
processor, a special purpose processor, a conventional pro-
cessor, a digital signal processor (DSP), a plurality of micro-
processors, one or more microprocessors in association with
a DSP core, a controller, a microcontroller, Application Spe-
cific Integrated Circuits (ASICs), Field Programmable Gate
Arrays (FPGAGs) circuits, any other type of integrated circuit

10

15

20

25

30

35

40

45

50

55

60

65

6

(IC), and/or a state machine. Such processors may be manu-
factured by configuring a manufacturing process using the
results of processed hardware description language (HDL)
instructions and other intermediary data including netlists
(such instructions capable of being stored on a computer
readable media). The results of such processing may be
maskworks that are then used in a semiconductor manufac-
turing process to manufacture a processor which implements
aspects of the embodiments.

The methods or flow charts provided herein may be imple-
mented in a computer program, software, or firmware incor-
porated in a non-transitory computer-readable storage
medium for execution by a general purpose computer or a
processor. Examples of non-transitory computer-readable
storage mediums include a read only memory (ROM), a ran-
dom access memory (RAM), a register, cache memory, semi-
conductor memory devices, magnetic media such as internal
hard disks and removable disks, magneto-optical media, and
optical media such as CD-ROM disks, and digital versatile
disks (DVDs).

What is claimed is:

1. A method for accelerating cryptographic processing of a
cryptographic algorithm, comprising:

breaking the cryptographic algorithm into a plurality of

cryptographic primitives;

determining for each of the cryptographic primitives if

each cryptographic primitive is capable of being
executed in parallel;

executing the cryptographic primitive in parallel if the

cryptographic primitive is fully capable of being
executed in parallel;

executing a part of the cryptographic primitive in parallel

that if the cryptographic primitive is partially capable of
being executed in parallel;

sequentially executing the cryptographic primitive if the

cryptographic primitive is not capable of being executed
in parallel; and

distributing processing of the cryptographic primitive fully

capable of being executed in parallel or the partially-
capable of being executed in parallel cryptographic
primitive to one or more devices capable of parallel
execution of the cryptographic primitive.

2. The method according to claim 1, wherein the devices
capable of parallel execution of the cryptographic primitive
include at least one of: a graphics processing unit or a cryp-
tographic processing device.

3. The method according to claim 2, wherein the crypto-
graphic processing device includes an integrated crypto-
graphic processor or a cryptographic co-processor.

4. The method according to claim 2, wherein the crypto-
graphic processing device includes one or more crypto-
graphic engines, each cryptographic engine being specific to
a particular cryptographic algorithm.

5. The method according to claim 1, wherein the crypto-
graphic primitive executed sequentially is executed on a cen-
tral processing unit core.

6. The method according to claim 1, wherein the determin-
ing if a component is capable of being executed in parallel
includes determining available hardware.

7. The method according to claim 6, wherein the determin-
ing available hardware includes determining the available
hardware at runtime.

8. The method according to claim 1, wherein cryptographic

primitives that are capable of being executed in parallel
include parallelizable message authentication codes
(PMAC); and

US 9,342,712 B2

7

wherein cryptographic primitives that are partially capable
of’being executed in parallel include multiple data exten-
sions (SSE) for hash functions.

9. A system for accelerating cryptographic processing,
comprising:

one or more devices capable of parallel execution of cryp-

tographic primitives of a cryptographic algorithm; and

a central processing unit core, configured to:

break the cryptographic algorithm into a plurality of
cryptographic primitives;

determine for each of the cryptographic primitives if
each cryptographic primitive is capable of being
executed in parallel;

execute the cryptographic primitive in parallel if the
cryptographic primitive is fully capable of being
executed in parallel;

execute part of the cryptographic primitive in parallel if
the cryptographic primitive is partially capable of
being executed in parallel;

sequentially execute the cryptographic primitive if the
cryptographic primitive is not capable of being
executed in parallel; and

distribute processing of the cryptographic primitive
fully capable of being executed in parallel or the par-
tially-capable of being executed in parallel crypto-
graphic primitive to one or more devices capable of
parallel execution of the cryptographic primitive.

10. The system according to claim 9, wherein the devices
capable of parallel execution of the cryptographic primitives
include at least one of: a graphics processing unit or a cryp-
tographic processing device.

11. The system according to claim 10, wherein the crypto-
graphic processing device includes an integrated crypto-
graphic processor or a cryptographic co-processor.

12. The system according to claim 10, wherein the crypto-
graphic processing device includes one or more crypto-
graphic engines, each cryptographic engine being specific to
a particular cryptographic algorithm.

13. The system according to claim 9, wherein the central
processing unit core is further configured to execute the cryp-
tographic primitives that are executed sequentially.

14. The system according to claim 9, wherein the central
processing unit and the one or more devices capable of par-
allel execution are located on a single die.

15. The system according to claim 9, wherein the central
processing unit core is further configured to:

determine if the plurality of cryptographic primitives is

capable of being executed in parallel depending on
available hardware.

16. The system according to claim 15, wherein the central
processing unit core is further configured to:

determine the available hardware at runtime.

10

15

20

25

30

35

40

45

8

17. The system according to claim 9, wherein crypto-
graphic primitives that are capable of being executed in par-
allel include parallelizable message authentication codes
(PMAC); and

wherein cryptographic primitives that are partially capable
of being executed in parallel include multiple data exten-
sions (SSE) for hash functions.

18. A non-transitory computer-readable storage medium
storing a set of instructions for execution by a general purpose
computer to accelerate cryptographic processing of a crypto-
graphic algorithm, the set of instructions comprising:

a breaking code segment for breaking the cryptographic

algorithm into a plurality of cryptographic primitives;

a determining code segment for determining for each ofthe
cryptographic primitives if each cryptographic primitive
is capable of being executed in parallel;

a first executing code segment for executing the crypto-
graphic primitive in parallel if the cryptographic primi-
tive is fully capable of being executed in parallel;

a second executing code segment for executing a part of the
cryptographic primitive in parallel if the cryptographic
primitive is partially capable of being executed in paral-
lel;

a sequentially executing code segment for sequentially
executing the cryptographic primitive if the crypto-
graphic primitive is not capable of being executed in
parallel; and

a distributing code segment for distributing processing of
the cryptographic primitive fully capable of being
executed in parallel or the partially capable of being
executed in parallel component to one or more devices
capable of parallel execution of the cryptographic primi-
tive.

19. The non-transitory computer-readable storage medium
according to claim 18, wherein the instructions are hardware
description language (HDL) instructions used for manufac-
turing of a physical device.

20. The non-transitory computer-readable storage medium
according to claim 18, wherein the determining code segment
includes

determining available hardware.

21. The non-transitory computer-readable storage medium
according to claim 20, wherein the determining code segment
includes:

determining the available hardware at runtime.

22. The non-transitory computer-readable storage medium
according to claim 18, wherein cryptographic primitives that
are capable of being executed in parallel include paralleliz-
able message authentication codes (PMAC); and

wherein cryptographic primitives that are partially capable
of being executed in parallel include multiple data exten-
sions (SSE) for hash functions.

#* #* #* #* #*

